

1. Introduction

The Inensitive Nuclei Enhanced by Polarization Transfer (INEPT) experiment is used to increase the signal strength of nuclei with low gyromagnetic ratio and low natural abundance. Sensitivity enhancement is described by γ_H/γ_X with γ_H and γ_X being the respective gyromagnetic ratio of H and X. It is achieved by polarization transfer from protons to a bonded nucleus X via X-H spin coupling. This example demonstrates the basic procedure of double resonance 1D NMR data acquisition and processing on Tecmag spectrometers.

2. Pulse sequence

(b) Pulse width and phase cycle:

P1 (H90°): phH1 = 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 2, 2, 2, 2, 2.

P2 (H180°): phH2 = 0, 2.

P3 (H90°): phH3 = 1, 1, 3, 3.

P4 (C180°): phC1 = 0, 2.

P5 (C90°): phC2 = 0, 0, 0, 0, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3.

Receiver: phrx = 0, 0, 2, 2, 1, 1, 3, 3.

(phH2, phH3, phC1, phC2, and phrx are 1D phase tables. All tables are in 4 step mode.)

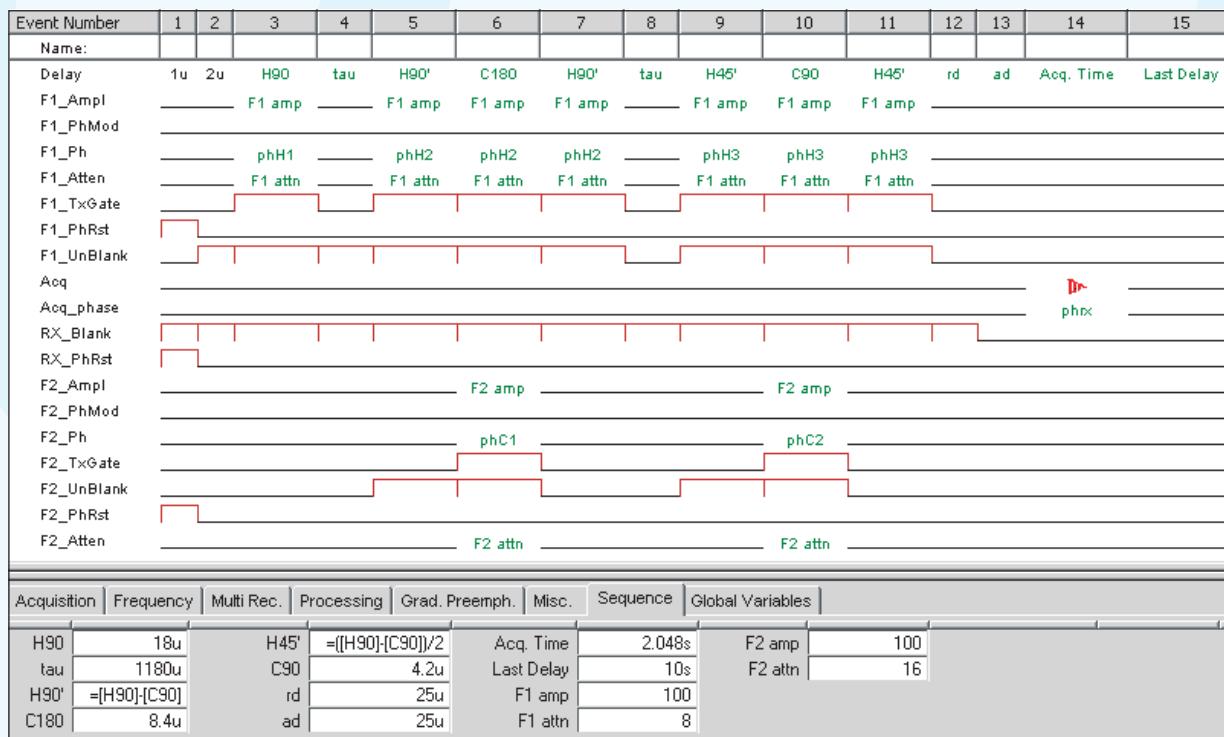


Fig. 1. (a) The ^{13}C INEPT sequence. (b) The sequence in the NTNMR sequence editor.

3. Experiment and Results

Sample: 5 % CHCl_3 in acetone-D₆
Spectrometer: 7 Tesla Magnet with Tecmag HF3 discovery
Probe: Naloac D300-5 OWB 5mm $^1\text{H}/^{13}\text{C}$ Switchable probe
 ^1H hard pulse: 13.9 kHz ($90^\circ = 18 \mu\text{s}$)
 ^{13}C hard pulse: 59.5 kHz ($90^\circ = 4.2 \mu\text{s}$)
 τ : 1.18 ms ($= 1/4J_{\text{C},\text{H}} = 212 \text{ Hz}$)
SW +/-: $\pm 500 \text{ Hz}$
Last Delay: 10 s
Scans 1D: 128

Notes:

1. Before editing the sequence (Fig. 1b), calibrate the 90° pulse widths of ^1H and ^{13}C using the nutation experiment (see note, "One Pulse Experiment and Pulse Calibration").
2. The center of pulses P2 and P4 (also P3 and P5) should be aligned. Since $P2 > P4$ (and $P3 > P5$) P2 (and P3) have to split into 3 pulses. The delay of P2's (and P3's) middle pulse equals to P4 (and P5), and the delay of both sides is $(P2 - P4)/2$ [and $(P3 - P5)/2$]. The middle pulse of P2 (and P3) falls on the same event as P4 (and P5).

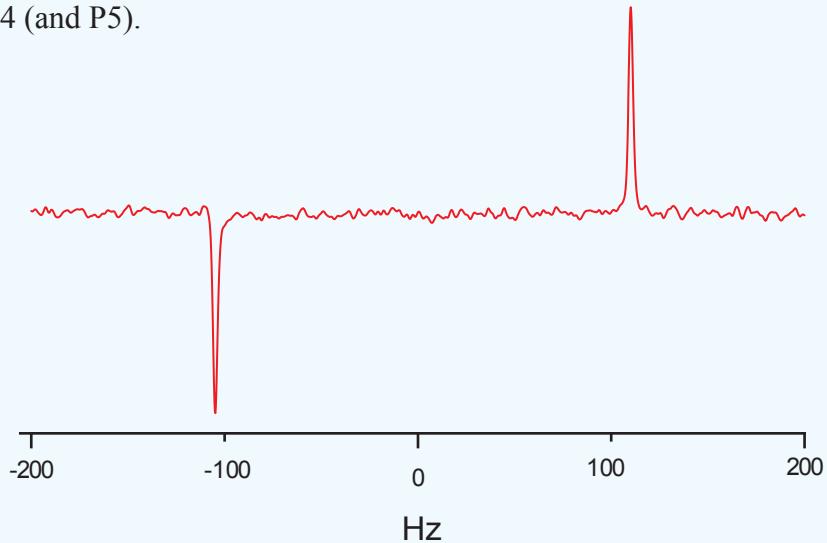


Fig. 2. The ^{13}C INEPT spectrum of CHCl_3 as obtained using the sequence shown in Fig.1.

4. References

1. G.A. Morris, R. Freeman, *J. Am. Chem. Soc.* **1979**, *101*, 760-763.
2. S. Braun, H.-O. Kalinowski, S. Berger, "150 and More Basic NMR Experiments", Wiley-VCH, 1999, p.168-170.